CATEGORY THEORY CATEGORY I - POSETS

PAUL L. BAILEY

1. Posets

Definition 1 (Objects). A poset (P, \leq) consists of a set P together with a relation \leq on P with the following properties:

(P1) $a \le a$	(Reflexivity)
-----------------------	---------------

(P2)
$$a \le b$$
 and $b \le a$ implies $a = b$ (Antisymmetry)

(P3)
$$a \le b$$
 and $b \le c$ implies $a \le c$ (Transitivity)

The relation \leq is called a *partial order* on P, and the word poset is short for "partially ordered set".

A partial order is a *total order* (or *linear order*) if, additionally, the relation satisfies

(P4)
$$a \le b$$
 or $b \le a$ (Definiteness)

A set together with a total order is call a "totally ordered set".

There are three archetypical examples of posets.

Example 1. Consider the set \mathbb{R} of real numbers, and its standard order relation \leq . Then \leq is a total order on \mathbb{R} , and (\mathbb{R}, \leq) is a poset. In fact, it is a totally ordered set.

Example 2. Let $a, b \in \mathbb{Z}$. We say that a divides b, and write $a \mid b$, if there exists $k \in \mathbb{Z}$ such that b = ka.

Let P be a set of positive integers. Then divisibility is a partial order on P, and (P, |) is a poset.

Example 3. Let A and B bet set. We say that A is contained in B, and write $A \subset B$, if every element in A is an element in B.

Let $\mathcal C$ be a collection of sets. Then containment is a partial order on $\mathcal C$. Thus, $(\mathcal C,\subset)$ is a poset.

Definition 2 (Subobjects). Let (P, \leq) be a poset. If $Q \subset P$, the restriction of \leq to Q satisfies the properties of a partial order on Q, making (Q, \leq) a poset. We may call (Q, \leq) , or just Q, a *subposet*.

Definition 3 (Morphisms). Let P and Q be posets. A function $f: P \to Q$ is called *order preserving* if

$$p_1 \leq p_2 \quad \Rightarrow \quad f(p_1) \leq f(p_2).$$

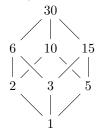
The identity map on P is order preserving, and the composition of order preserving functions is order preserving. Thus, posets with order preserving maps form a category.

Date: February 3, 2018.

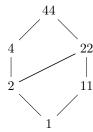
2. Factor Sets

Definition 4 (Objects). Let n be a positive integer. The factor set of n, denoted $\mathcal{F}(n)$, is the set of all positive integers which divide n. Factor sets are partially ordered by divisibility.

Finite posets may be drawn using *Hasse diagrams*, as follows.



Factor Set of n = 30



Factor Set of n = 44

Definition 5 (Morphisms). Let m and n be positive integers. A morphism from $\mathcal{F}(n)$ to $\mathcal{F}(m)$ is a function

$$f: \mathfrak{F}(n) \to \mathfrak{F}(m)$$

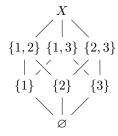
such that,

- (a) f(1) = 1;
- **(b)** $a \mid b \Rightarrow f(a) \mid f(b)$, for all $a, b \in \mathcal{F}(n)$.

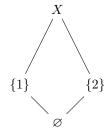
Factor sets form a nonfull subcategory of the category of partially ordered sets.

3. Power Sets

Definition 6 (Objects). Let X be any set. The *power set* of X, denoted $\mathcal{P}(X)$, is the set of all subsets of X. Power sets are partially ordered by containment.



Power set of $X = \{1, 2, 3\}$



Power set of $X = \{1, 2\}$

Definition 7 (Morphisms). Let X and Y be sets. A *morphism* from $\mathcal{P}(X)$ to $\mathcal{P}(Y)$ is a function

$$f: \mathcal{P}(X) \to \mathcal{P}(Y)$$

such that,

- (a) $f(\emptyset) = \emptyset$;
- **(b)** $A \subset B \Rightarrow f(A) \mid f(B)$, for all $A, B \subset X$.

Power sets form a nonfull subcategory of the category of partially ordered sets.

DEPARTMENT OF MATHEMATICS, BASIS SCOTTSDALE

 $Email\ address: {\tt pbailey@basised.com}$